

FUSION QBD

QUALITY BY DESIGN SOFTWARE

NEW FEATURES – VERSION 9.9.2

S-Matrix Corporation www.smatrix.com

Contents

New Features – General – 9.9.2	3
INSTRUMENT DRIVERS/CONFIGURATIONS – INCREASED DATA INTEGRITY	3
RESPONSE DATA IMPORT – RENAME FILE SUPPORT	4
BEST OVERALL ANSWER MATH ENGINE – EFFICIENCY ENHANCEMENT	5
AUDIT LOG REPORT – IMPORT RESPONSES SUMMARY	6
New Features in Fusion Administrator – 9.9.2	7
USER ACCESS PASSWORDS – COMPLEXITY ENHANCEMENTS	7
NEW FEATURES IN FUSION METHOD DEVELOPMENT (FMD)	8
REPLICATION STRATEGY EXPERIMENT	8
GRADIENT TIME SETTINGS CONTROL	10
COMBINING GRADIENT TIME AND GRADIENT SLOPE	11
PEAKTRACKER – NEW FEATURES	12
Global Tracking Method Optimization	12
m/z Filtering for Baseline & Interfering Compounds	13
Tracking Algorithm Enhancements	14
Reference Peak Designation	15
ROBUSTNESS SIMULATOR – NEW FEATURES	16
Mobile Phase Composition (MPC) Variation	16
Modeling Advancement – Resolution Robustness	18
VERIFICATION RUNS – FULL AUTOMATION AND REPORTING SUPPORT	19
New Features in Fusion Method Validation (FMV) – 9.9.2	20
INTERMEDIATE PRECISION AND REPRODUCIBILITY (IP&R) ADVANCEMENTS	20
New Features in Fusion Inhaler Testing (FIT) – 9.9.2	22
PRODUCT TESTING CONFIGURATION – AUTOMATED LOQ CALCULATIONS	22
NEW MASS BALANCE CALCULATION METHOD OPTIONS	23
NEW LC SYSTEM MODULE/DEVICE SUPPORT	24
EMPOWER CDS – SQD AND SQD2 SUPPORT	24
CHROMELEON CDS – EXTERNAL SOLVENT SELECTION VALVE SUPPORT	25

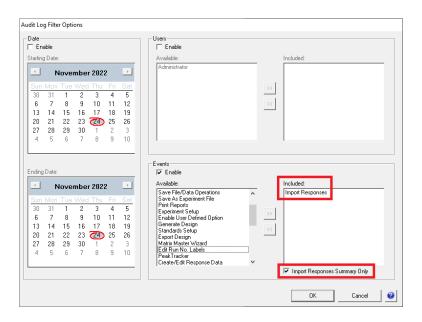
Instrument Drivers/Configurations – Increased Data Integrity

Fusion Administrator application (FA) instrument and device drivers, and instrument configurations for Named Instrument Systems generated in Fusion Administrator, are now integrated within an encrypted FA database for greater security and integrity. This data security enhancement eliminates the possibility of driver/configuration corruption and facilitates the FA database Backup and Restore operations.

Response Data Import – Rename File Support

Initiating the Import Responses operation now prompts the user to rename the file prior to proceeding with data import. This enables the user to preserve the original design file in case the user wishes to start over after importing results, analyzing data, etc. S-Matrix implemented this feature in response to a large number of support inquiries over the years in which the user wanted to know how to return to a "clean slate" starting point but no longer had access to their original design file.

File Edit Activity Tools Window H D 📝 🔗 🖃 🎇 📮 🎒 🌆		un No. Labels 📶 I	Matrix Macter of F	ivnor 5 Imno	rt Pernon	ses T Create/Edit Response Data 🔲 Show/Hide Responses 🔠 Sort Grid 🥝
Design of Experiments	Cultin			sepor 1 Z mipo	n Kespon	
		Run No.	Gradient Time	Column Type	1	
Design Reports		Conditioning_Run_1	2.0	Column 1	- 1 -	
ata Management / Analysis	2	Conditioning_Run_1	2.0	Column 2	- N	
Data Management	3	Conditioning Run 3	2.0	Column 3	- \	
- • Data Analysis	4	Conditioning_Run_4	2.0	Column 4	· L	
est Answer Searches	5	1	25.0	Column 4		
	6	2	17.5	Column 3		Fusion QbD X
Acceptable Performance Region	7	3	10.0	Column 4		
- Point Predictions	8	4	10.0	Column 2		Would you like to save your file with a different name to
isualization Graphics	9	5	25.0	Column 1		preserve your original design file before proceeding?
- Single Response Series	10	6	17.5	Column 2		
	11	7	17.5	Column 2		
eporting Toolkit	12	8	25.0	Column 3		
- • Fusion Reporter	13	9	10.0	Column 2		Yes No
- • Audit Log Reporter	14	10	10.0	Column 1		
	15	11	10.0	Column 3		
	16	12	17.5	Column 3		
	17	13	25.0	Column 2		
	18	14	17.5	Column 4		
	19	15	10.0	Column 1		
	20	16	17.5	Column 1		
	21	17	17.5	Column 4		
	22	18	17.5	Column 1		
	23	Conditioning_Run_5	2.0	Column 1		
	24	Conditioning_Run_6	2.0 2.0	Column 2 Column 2		
	25	Conditioning_Run_7	2.0	Column 3 Column 4		
	26	Conditioning_Run_8	2.0	Column 4		


Best Overall Answer Math Engine – Efficiency Enhancement

The mathematics underlying the Best Overall Answer (BOA) search routine has been upgraded to accelerate the search operation. A more efficient integrated search operation has now replaced the three-search-cycle operation in previous releases. As a result, users will now typically experience a 3x-5-x increase in speed associated with each search. For example, a search which previously took three minutes should now take a maximum of one minute.

🐺 Best	Answer Search - Response Goal Settings						;	×
Report Na				Model Pr	ediction Error C.I. for Repor	t ± 2 Sigma		\sim
	l Search 2			Hodern				
Response								
Maxim	· · · · · · · · · · · · · · · · ·	Best C	Overall Answer: Goal = Maxi	mize				
Target				Upper				
	Lower Bound: any answer <= this value is equally (Desirability = 0.0000).		0000 -	Bound Equivalent				
	Recommended Setting: the value at the threshold	of unacceptable						
	performance		2					
	Upper Bound: any answer >= this value is equally	acceptable.	Lower Bound					
	(Desirability = 1.0000).		ě					
	Recommended Setting: the value at or above the t acceptable performance.	hreshold of	Unacceptable					
			60	100				
	[Desirability: Absolute Scale = Zero (0.0000) to One (-	+1.0000).]	Example Response: I	ower Bound = 60				
		,	,		,			
Enabled	Response	Goal	Lower Bound	Target	Upper Bound	Relative Rank		
	F - Rs-Map USP Resolution	Maximize 🗸	2.000		3.000		· ~	^
	A - Rs-Map USP Resolution	Maximize 🗸	2.000		3.000) ~ [
	API - Rs-Map USP Resolution	Maximize 🗸	2.000		3.000) ~ [
	D-Deg - Rs-Map USP Resolution E - Rs-Map USP Resolution	Maximize V Maximize V	2.000		3.000			
	B - RetentionTime	Maximize V	1.000		2.000		<u>, </u>	
	API - USPTailing	Minimize V	1.000		1.500			
	B - KPrime	Maximize 🗸	2.000		3.000		_	~
Select A	I Select None Response Ranges Add I	Named Peak Rs Responses.						
Dr. The e	Pu The settings are valid.							
ine s	etungs are valiu.							
					Modify Search Region	Finish	Cancel	

Audit Log Report – Import Responses Summary

Report generation can require a significant amount of time in cases in which the user has imported a large amount of response data. This is especially true in cases in which the imported results include MS spectra data imported to support PeakTracker. Therefore, as shown in the top image below, the Audit Log Report wizard now includes an "Import Responses Summary Only" checkbox option which is enabled when the user includes the Import Responses auditable operation. When the checkbox is checked, the Audit Log Report will only contain the metadata associated with the Import Responses operation and not all the imported response data.

Audit Log

20 JUN 2021 10:13:51 PDT [UTC-07:00] - Administrator

Event Type: Import Responses

Import Response Settings

Setting	Value
Target CDS	EMPOWER
Empower Version	Empower 3 Software Build 3471 SPs Installed: Service Release 3 DB ID: 2484307300
Empower Database	(local)
Empower User	system
Project Name	RD2 - Optimization - 9_9_0
Result Set(ID)	RD2 Optimization (9001)
Processed Channel	PDA Ch1 225nm@4.8nm, Time offset by 0.020 mins.
Activate PeakTracker	Checked
Raw PDA Channel	Unchecked
Raw MS Channel	QDa Positive Scan
MS Time Offset(min)	0.02
MS Intensity Threshold	100000
Processed MS Channel	QDa Positive Scan MS TIC, Smoothed by 59 point Savitzky-Golay Filter. (QDa Positive(+) Scan (100.00-1250.00)Da, Centroid, CV=15)
Track Non-absorbing Peaks	Checked
Auto-imported Response(s)	Height, RetentionTime, WidthAt50Pct, USPTailing, WidthAtTangentUSPResolution, Area
Import Chromatogram Trace Data	Checked
Import Prediction Chromatogram Data	Checked
Total Import Time	00:06:42
Locale	English (United States)

New Features in Fusion Administrator – 9.9.2

User Access Passwords – Complexity Enhancements

The following password requirement setting options have been added to the current requirement that the password "Must contain at least one digit" to enhance password complexity:

- Must contain at least one upper case and one lower case letter
- Must contain at least one of the following special characters:

~ ! @ # \$ % ^ & * () _ - + = ` | \ () { } [] : ; < > , . ? /

K Change Password Settings for: analyst	×
User must change password at next logon	
Prevent duplicate passwords	
Password never expires Expiration interval 90 days	
Minimum password length 4	
Must contain at least one digit	
Must contain at least one upper case and one lower case letter	
Must contain at least one of the following special characters:	
~! @ # \$ % ^ & * () + = ' () { } []:; <> , . ? /	
OK Cancel	

New Features in Fusion Method Development (FMD)

Replication Strategy Experiment

Replication Strategy is described in the new ICH Q14 and USP <1220> guidances on Analytical Procedure Lifecycle Management (APLM). The optimal **Replication Strategy** for the method is determined during development and becomes part of the final method SOP.

The Fusion Method Development application module (FMD) now includes a **Replication Strategy** experiment. A **Replication Strategy** is a combination of Sample Preparation and Sample Injection repeats (*preparation x injection*). The result obtained from averaging these repeated measures is the **Reportable Value** (or Reportable Result) for each critical method performance characteristic.

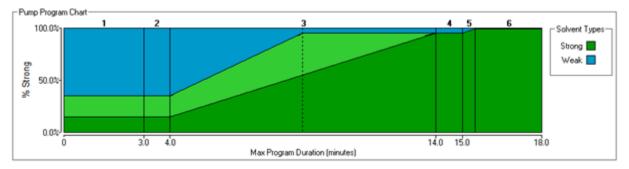
Project Select Project User Defined Project 1 Instrument Fusion QbD Demo H_Class Instrument Type: LC Data System: Waters Empower Pump Module: Quaternary Experiment Type Size Exclusion - Gel Permeation Size Exclusion - Gel Permeation Size Exclusion Strategy	Create New Work File	
Instrument Fusion QbD Demo H_Class Instrument Type: LC Data System: Waters Empower Pump Module: Quaternary	Project Select Project User Defined	
	Instrument Fusion QbD Demo H_Class Instrument Type: LC Data System: Waters Empower Pump Module: Quaternary	Reversed Phase (RPC) Normal Phase (NPC) Chiral - RPC Chiral - NPC HILIC Ion Exchange Size Exclusion - Gel Permeation Size Exclusion - Gel Filtration

The **Replication Strategy** experiment in FMD has the following capabilities:

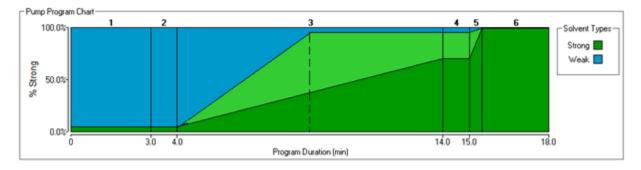
- Quantifies the relative contribution of Sample Preparation error and Sample Injection error to the Total Analytical Error (TAE), which includes both accuracy (bias) and precision limits.
- Incorporates the USP <1210> Interval metric calculations which combine accuracy and precision into a single criterion which can be used to simultaneously evaluate both accuracy and precision for each measured critical method performance characteristic.
- Determines the TAE and the specified USP <1210> Interval metric associated with all replication strategies from 1x1 to 10x10.
- Identifies all replication strategies which generate reportable values meeting the method precision requirement specified in your Analytical Target Profile (ATP) for each critical method performance characteristic.

Gradient Time Settings Control

The Experiment Setup activity within FMD now has a flexible settings control for the Gradient Time study factor. Users can now specify the exact number of levels which should be included in the experiment design. Users can also enter the target levels as either slope or time. The control will automatically convert user-entered slope levels as the corresponding time levels which will be used in design generation.


- Pump	Pump Program-							۲G	iradient Study Factor: Grac	lient Time
No	No. of Gradient Steps: 1 - Time Precision 38 188							Setting Mode		
	No.	Step Name	Time State	Time - Lower Bound	Time - Upper Bound	% Strong Solvent			C Slope	Update
V	1	Equilibration	Constant 🔻	3.0		5.0			Gradient	Time(min) Slope(%/min)
	2	Initial Hold	Constant 🔻	1.0		5.0			No. of Levels 3 💌	10.0 9.0
	3	Gradient	Variable	10.0	25.0					17.5 5.1
	4	Final Hold	Constant 🔻	1.0		95.0				25.0 3.6
	5	Ramp Up to Wash	Constant	0.5						
	6	Column Wash	Constant 🔻	4.0		99.0				
	7	Ramp Down from Wash	Constant	0.5						
	8	Re-equilibration	Constant 🔻	3.0		5.0				
			Program dura	tion: Min = 23.	0 minutes, Ma	x = 30.5 minutes	\$			

Combining Gradient Time and Gradient Slope

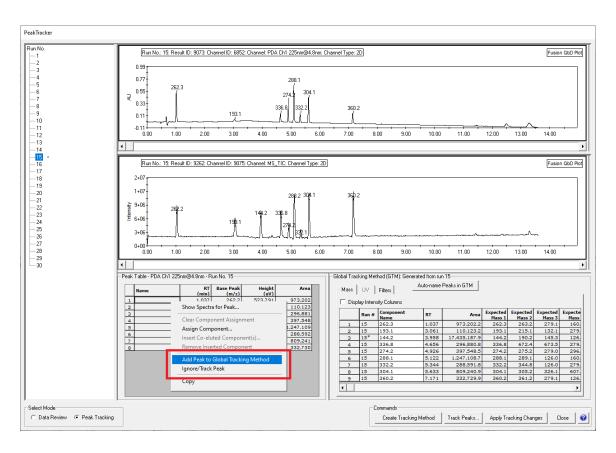

As shown in the images below, Fusion QbD now enables the user to create method development and robustness studies which include both Gradient Time and Gradient Slope study factors. In the case of the Gradient Slope study factor, the user can specify varying the starting point or the endpoint % strong solvent. Studies have shown that these factors can have strong interaction effects on shape and selectivity. Therefore, in many cases combining them in a study can provide important method development results.

	No. of Gradient Steps: 1 💌 Time Precision 🔣 號											
2 Initial Hold Constant ▼ 1.0 10.0-30.0 3 Gradient Variable ▼ 10.0 25.0 4 Final Hold Constant ▼ 1.0 95.0 5 Ramp Up to Wash Constant ▼ 0.5 95.0 6 Column Wash Constant ▼ 4.0 99.0 7 Ramp Down from Wash Constant 0.5 10.0-30.0		No.	Step Name	Time State	Lower	Upper						
3 Gradient Variable ▼ 10.0 25.0 4 Final Hold Constant ▼ 1.0 95.0 5 Ramp Up to Wash Constant ▼ 0.5 99.0 ✓ 6 Column Wash Constant ▼ 4.0 99.0 7 Ramp Down from Wash Constant 0.5 10.0-30.0	N,	1	Equilibration	Constant 🔻	3.0		10.0-30.0					
4 Final Hold Constant ▼ 1.0 95.0 5 Ramp Up to Wash Constant 0.5 Solvent Type Initial % Initial % Upper Final % ✓ 6 Column Wash Constant 0.5 99.0 Strong (Organic) 10.0 30.0 95.0		2	Initial Hold	Constant 🔻	1.0		10.0-30.0		O Vary starting poir	nt		
4 Final Hold Constant ▼ 1.0 95.0 5 Ramp Up to Wash Constant ▼ 0.5 ✓ 6 Column Wash Constant ▼ 4.0 99.0 7 Ramp Down from Wash Constant ▼ 0.5 99.0 5 Solvent Type Initial % Lower Upper Final % 6 Column Wash Constant ▼ 0.5 7 Ramp Down from Wash Constant 0.5		з	Gradient	Variable 🔻	10.0	25.0			O Varu and point			
✓ 6 Column Wash Constant ▼ 4.0 99.0 Solvent Type Integer / Lower Upper Final % 7 Ramp Down from Wash Constant 0.5 10.0-30.0 Strong (Organic) 10.0 30.0 95		4	Final Hold	Constant 🔻	1.0		95.0		 Valy end point 			
Matrix Matrix<		5	Ramp Up to Wash	Constant	0.5					Initial %	Initial %	F 1.00
	N.	6	Column Wash	Constant 🔻	4.0		99.0		Solvent Type			Final %
🗹 8 Re-equilibration Constant 🗸 3.0 10.0-30.0 Weak (Aqueous) 90.0 70.0 5		7	Ramp Down from Wash	Constant	0.5		10.0-30.0		Strong (Organic)	10.0	30.0	95.
	V	8	Re-equilibration	Constant 🔻	3.0		10.0-30.0		Weak (Aqueous)	90.0	70.0	5.

Gradient Time + Gradient Slope – Vary Starting Point % Strong Solvent

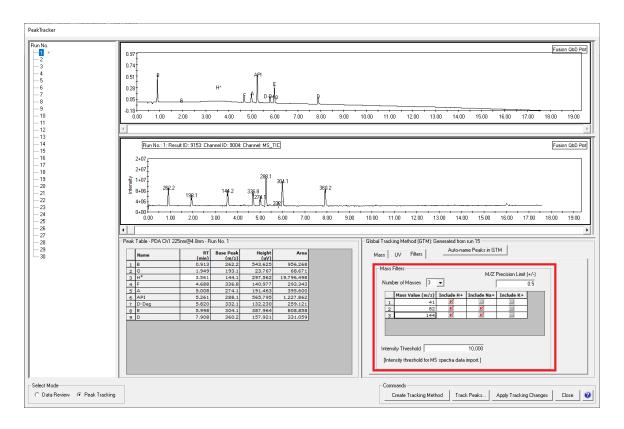
Gradient Time + Gradient Slope - Vary End Point % Strong Solvent

Global Tracking Method Optimization


Two new simple operations have been added to the PeakTracker popup menu to optimize the Global Tracking Method (GTM) used in peak tracking:

• Add Peak to Global Tracking Method

This option is used when a peak is not visible in the chromatogram on which the GTM is based – for example due to peak co-elution, but which is at least partially separated in another run, and so visible in the run. In this case users can select this option to add the peak to the GTM. This option assures that all sample peaks are included in the GTM prior to tracking.

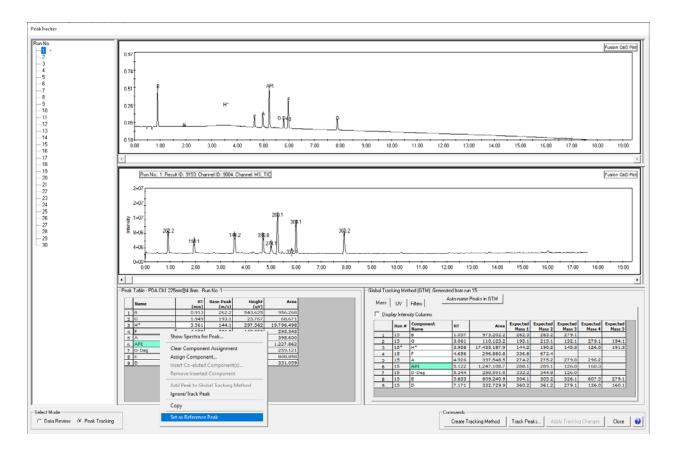

• Ignore/Track Peak

This option is used when the chromatogram for the run on which the GTM is based contains an integrated peak which the user does not want to track. In this case the user can exclude the peak from the GTM prior to tracking. Alternatively, if a peak was incorrectly excluded, then the option can toggle to include the previously excluded peak, in which case the peak will again be present in the GTM.

m/z Filtering for Baseline & Interfering Compounds

Filters can now be added to PeakTracker to eliminate specific m/z values from the imported mass spectra data used for peak tracking. Filter values can be entered for extraneous (background noise) compounds such as mobile phase solvents and their associated adducts which may compromise the mass spectra of compounds of interest, especially in the case of small peaks with low mass signal. The filters enable you to specify the expected compound mass and the possible presence of three common ions: H⁺, Na⁺, and K⁺. PeakTracker will automatically eliminate these masses from the mass spectra data for the Global Tracking Method compounds prior to tracking.

Tracking Algorithm Enhancements


S-Matrix has developed powerful advancements to its peak tracking algorithms which support the following cases:

- Peak results data do not include MS spectra data.
- One or more sample compounds do not ionize.
- Forced Degradation Studies.
- Peptide Mapping studies.

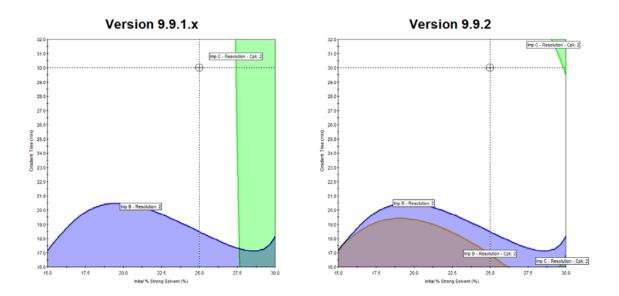
Reference Peak Designation

In cases such as Peptide Mapping studies there is normally no single, large API peak present in the sample. In such cases it is best if the user can spike the sample with a 'Reference Peak' prior to running the experiment. The spiked peak should 1) be substantially larger than all other peaks, and 2) elute in a region of the chromatogram which results in it being always well separated from all other sample compounds. When this is not possible, PeakTracker now enables the user to define an alternate 'Reference Peak' to support corrections needed to the tracking for individual chromatograms.

As shown in the image below, the initial tracking operation has defined the API component as the 'Reference Peak' – as indicated by the blue background in the corresponding 'Component Name' cell within the Global Tracking Method (GTM) grid. However, a new "Set as Reference Peak" function has been added to the popup menu in the 'Peak Table' panel whenever a peak other than the current reference peak has the focus. This enables the user to easily designate another peak as the 'Reference Peak' and automatically retrack the peaks in the current run.

Mobile Phase Composition (MPC) Variation

Gradient slope variation during method execution is an expression of moment-to-moment Mobile Phase Composition (MPC) variation due to pump precision limits. Gradient Time and Gradient Slope study factors both affect the slope of the gradient. For example, Gradient Time varies the time at constant initial and final % strong solvent. The different time level settings therefore directly equal changes in slope. And Gradient Slope directly varies either the starting point % or endpoint % strong solvent. Therefore, MPC variation is the correct input into robustness simulation to represent slope variation occurring during method execution for Gradient Time and Gradient Slope study factors included in an experiment design.


Users have always been able to directly input the desired MPC variation, for example $\pm 2.0\%$, into the Robustness Simulator wizard for each Gradient Slope study factor. However, prior to Version 9.9.2 the user was required to carry out a 2-step calculation procedure for each Gradient Time study factor to convert the desired MPC variation setting into the corresponding time variation for input into the wizard. As shown in the image below, with Version 9.9.2 users can now directly input the desired MPC variation as a single global entry into the Robustness Simulator wizard. For Gradient Time study factors the software will automatically convert the desired MPC variation for the simulation and then associate the single input with each Gradient Time and Gradient Slope study factor in the design.

🐺 Rob	ustness Simulator		×
	Maximum Expected Variation (±3ơ): The ±3ơ value defines the "total" setpoint error. This is the maximum variation around a given setpoint exp ongoing use over time due to random error.	ected during	point for Each Variable ximum Expected Variation (Control Limit Delta = ±30) MPORTANT: Jee manufacturer's specs for the report Control Limit value on teach of tasked on the least- apable system in use.
Variable	Settings		^
Enabled	Experiment Variable	Units	Maximum Expected Variation (±3σ Value)
	Pump Flow Rate	mL/min	0.010
	Oven Temperature	°C	2.0
	pH	*	0.10
	Mobile Phase Composition (MPC)*	%	2.0
			~
The	C variation is composition (blend) variation due to pump pr value you enter will be applied to all Gradient Slope factor t All Select None Restore settings are valid.	-	: design.
			Back Next Cancel

Modeling Advancement – Resolution Robustness

S-Matrix has adapted its hyper-precise resolution modeling capabilities to its Robustness Simulator for robustness simulation of the Rs-Map Resolution response and of individual peak resolutions. This has resulted in a powerful advancement to the precision associated with resolution robustness predictions – especially in experimental regions corresponding to methods which yield results close to edges of failure for one or more peak resolutions.

The two graphs below show the mean (average) resolution and the corresponding resolution robustness of two critical peak pairs (B–A and C–E) obtained from Version 9.9.1.x (left graph) and from Version 9.9.2 (right graph). In both graphs the resolution performance requirement for each critical pair was set to a mean (average) resolution of \geq 2.00 and a minimum acceptable resolution threshold for individual injections of \geq 1.50. A comparison of the two graphs shows that Version 9.9.1.x (left graph) over predicted the resolution robustness of the B–A peak pair at the lower end of the Gradient Time study range (no orange shaded region). This is evidenced by the fact that the orange robustness failure region for the B–A peak pair, which is present in the right graph, is more closely aligned with the corresponding mean performance failure region (blue shaded region). The two graphs also show that Version 9.9.1.x under-predicted the resolution robustness of the C–E peak pair at the upper end of the Initial % Strong Solvent study range. This is evidenced by the large robustness performance failure region for the C–E peak pair in the left graph (green shaded region) and reinforced by the fact that the mean resolution of the C–E peak pair is >2.00 throughout the graphed region (no red shaded regions in either graph).

Verification Runs – Full Automation and Reporting Support

Fusion QbD now provides full closed-loop CDS automation and reporting support for experiment verification runs. As shown in the top image below, users can now select an Acceptable Performance Region report containing verification runs and generate a report containing predicted results and graphs for these runs. Users can then export them directly to the CDS as a ready-to-run sequence and methods. As shown in the bottom image below, when the user runs the sequence and processes the chromatograms in the CDS, Fusion QbD can then import the verification run chromatograms and data and integrate them into the report.

Point Predictions Wizard Report Name Verification Runs F Starting Point Options	Report	Incl	uded Resp		ence Limits ± 2 Sigma	_
			Include	Res	oonse Name	
C User Defined				Rs-Map Response		
No. of Prediction Points 1	-			B - USP Resolution		
	_			G - USP Resolution		
Acceptable Performance Regi	on Verification Runs			H* - USP Resolution		
Reports: Verification Runs			V	F - USP Resolution		
Nepolts. Verification Huns			1	A - USP Resolution		
Include	Verification Run		V	API - USP Resolutio	n	
APR_2_1			V	D-Deg - USP Resolu	tion	
APR_2_2			1	E - USP Resolution		
APR_2_3				D - USP Resolution		
APR 2_4				API - USPTailing		
APR_2_5			<u>×</u>	B - KPrime		
Select All Select N	one		Select A	Select None]	
# Run No.	Pump Flow Rate	Gradient Time		Oven Temperature	pH	
1 APR_2_1	0.450	12.00		48.00	3.700	
2 APR_2_2	0.450	12.00		48.00	3.900	
3 APR_2_3	0.450	12.00		42.00	3.700	
4 APR_2_4	0.450	12.00		42.00	3.900	
5 APR_2_5	0.450	12.00		45.00	3.800	
Per Validation Status: Your settings an	e valid.					
Include Observed Val	ues 🔽 Include Prediction Chro	omatograms Add Na	med Peak I	Rs Responses	Finish Cancel	0

🐺 Method Development - Optimization - Part 1 - Verification Runs.smae

<u>File Edit Activity Tools Window H</u>						
🗅 🖻 🔗 🔛 🕲 💵 🎒 🔤	Generate Predictions 😐	Delete Report	🚅 Exp	ort 🧕 Import Responses	0	
Design of Experiments • Create a Design • Design Reports	Point Predictions Reports Verification Runs Report	▼ PI	°2	Report Chromatograms		
Data Management / Analysis						
Oata Management o Data Analysis						
Best Answer Searches			_			
 Best Overall Answer 						
Acceptable Performance Region						
Point Predictions	Name: Adminis	trator			-	
Visualization Graphics - • Single Response Series	Company: S-Ma		tion		1	
Multiple Response Series	Project: Project					
Reporting Toolkit	Date: 24 NOV 2	022 16:13:47	PST [U	TC-08:00]	4	S-Matrix
- Fusion Reporter						
 Audit Log Reporter 	Point Prodict	iono Vori	icotio	n Runs Report		
	Foint Fredici	ions - veni	icauo	in Runs Report		
	Predicted Po	int - APR	1			
	realctear o	III - 74 IX_4				
	Variable Settin	IS				
	Name	Level Setting	Units			
	Pump Flow Rate	0.450	mL/min			
	Gradient Time	12.00	min			
	Oven Temperature	48.0	°C			
	pН	3.70	*			
I I						I

New Features in Fusion Method Validation (FMV) – 9.9.2

Intermediate Precision and Reproducibility (IP&R) Advancements

Prior to Version 9.9.2, the Validation Acceptance Criteria (VAC) settings for IP&R experiments were located on the main Experiment Setup display, and these settings were global – meaning the same settings were used for all compounds. As shown in the image below, the analysis wizard now contains the VAC settings, and the settings are now compound specific – meaning that users can now set independent VAC criteria for each compound included in the analysis.

🕌 Small Molecule Data Analysis	×
Select Response for Analysis	
Validation Acceptance Criteria	
□ Intermediate Precision (Std. Dev. <=)	
□ Repeatability (Std. Dev. <=)	
Confidence Interval and Max. Allowable Limit Settings	
□ % C.I. for Std. Dev. 95.00 ♡ Max. Allowable Limit 0.08	
Set Defaults	
Pa The settings are valid.	
Back	Finish Cancel

In addition, as shown in the image above, the IP&R analysis wizard now also contains Repeatability VAC settings. When the user enters VAC values, Fusion QbD automatically performs a full Repeatability analysis, and the report will contain the Repeatability analysis results within the Intermediate Precision and Repeatability Results table shown below.

Name	Value	Pass/Fail
Intermediate Precision Variance	0.003	
Intermediate Precision Std. Dev.	0.054	
Intermediate Precision Upper 95% C.I.	0.078	
Intermediate Precision Lower 95% C.I.	0.042	
Intermediate Precision % RSD	1.06	Pass
Repeatability Variance	0.001	
Repeatability Std. Dev.	0.027	
Repeatability Upper 95% C.I.	0.045	
Repeatability Lower 95% C.I.	0.019	
Repeatability % RSD	0.52	Pass

Intermediate Precision and Repeatability Results

Acceptance Criterion: Intermediate Precision % RSD <= 2 Acceptance Criterion: Repeatability % RSD <= 5

New Features in Fusion Inhaler Testing (FIT) – 9.9.2

Product Testing Configuration – Automated LOQ Calculations

Prior to Version 9.9.2, users had to manually calculate the individual apparatus stage LOQ values for each compound manually and enter the values into the LOQ column within the "Impactor Sample Properties" grid. Now Fusion Inhaler Testing will automatically calculate the individual apparatus stage LOQ values for each compound based on 1) the Compound LOQ value, and 2) "Dilution Factor" value associated with the stage.

Configuration Name Default Config. USPS					
Configuration Name Default Config. USPS					
General Settings		Data Treatment Settings			
Sanghing Plan Rule 00.00 (1) 1.000 (1) (UMin) Apply Specification Limits Does Delivery Mode Ona		Missing Peaks Use Zero 🗸 Data Below LOQ Use Zero 🗸			
Hass Balance Calculation Method Uniformity	w.				
Perform Uniformity Testing					
kunber of Compounds 2 v					Super-editable Amount Precision
Compound Name	Unit		1.00	lu	El use editable Anount Precision ()
Conpound Name	Unit		0,179		
	Unit 20 VQ			1	informity
Compound Name API 1 API 2 pactor Sample Properties Add/Remove Stages	59 49		0.125	it S	Informity 15.000
Conjourd Name API 1 API 2 poctor Sample Properties Additionesive Stages (Stage Name	99 149 [Stags Type	(bluten Pactor	[rod - %2 1	1 1 100 - MT 2	Informity 50:00 12:500 LDQ Precision 12:12
Conjourd Name API 1 API 2 poctor Sample Properties Additionesive Stages (Stage Name	og up Stage Type Derke	Dution Pactor	0.175 0.000 LOQ - M5 1 1.000	100q - API 2 0.525	Informity 12.500 LOQ Presson 120 120 0.000
Compound Name APT 1 APT 2 pactor Sample Properties Additionersive Stages (Stage Name	9 19 Stope Type Device Appendix	Didon Factor	0.176 0.003 1.000	LOQ + APT 2 - 0.325 0.325	2x5mmby 55.000 LOQ Preason 120 20 0.1300 0.1300
Compound Name W1 1 W1 2 Stage Name Stage Name	ing Log Stops Type Denice Apparatus Apparatus	Dudon Pactor	LOQ - MY I 3.000 3.000	L0Q +JPE 2 . 0.035 0.035 0.035	LCQ Precision 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Compound Name W1 1 W1 2 Stage Name Stage Name	ing ung Talaga Troje Bitwei Bitwei Appenatus Appenatus Appenatus	Diddon Pactor	L0Q - MT 1	L0Q - MR 2 0.535 0.535 0.535 0.535	Nformity 51.000 1.2.50 0.029 Pressue 10 10 0.189 0.189 0.189 0.189
Compound Name APT 1 APT 2 pactor Sample Properties Additionersive Stages (Stage Name	ing Log Stoge Type Dence Apprendus Apprendus Apprendus Apprendus	Diution Pietor	LOQ - MY I 3000 3000 2000	L0Q - MK 2 0.535 0.535 0.535 0.535 0.535 0.536	Nerversky 15.000 LOQ Precision 201 201 0.150 0.150 0.155 0.155
Compound Name WT 1 WT 2 Sactor Sample Properties Additioners/# Stages Stage Name	9 99 90 100 100 100 100 100 100 100 100	Diales Factor	LCQ - MY 1 100 200 200 200 200 200	L02 + API 2 0.337 0.337 0.337 0.337 0.337 0.339 0.399 0.399 0.399	Nforesty 5.000 2.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Compound Name W1 1 W1 2 Stage Name Stage Name	op up Denos Appendus Appendus Appendus Appendus Appendus Appendus Appendus Appendus	Diution Fector	LCQ - MT 1 LCQ - MT 1 3.000 3.000 3.000 2.000 2.000 2.000	LOQ +JH2 2 0.325 0.325 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355	Informity 5.00 LOQ Presson 20 20 0.30
Compound Name WT 1 WT 2 Sactor Sample Properties Additioners/# Stages Stage Name	9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Dution Pactor	LCQ - MY 1 LCQ - MY 1 1000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	LDQ - APR 2 0.33 0.355 0.355 0.355 0.355 0.356 0.356 0.356 0.356	Veferenty 5.000 1.000 Presser 10 10 0.001
Compand Name APT 1 APT 2 Packat Sample Properties Stage Name Properties Provide Provid	op up Denos Appendus Appendus Appendus Appendus Appendus Appendus Appendus Appendus	Division Partor	LCQ - MT 1 LCQ - MT 1 3.000 3.000 3.000 2.000 2.000 2.000	LOQ +JH2 2 0.325 0.325 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355	Informity 5.00 LOQ Presson 20 20 0.30

New Mass Balance Calculation Method Options

In Version 9.9.2 the main Product Testing Configuration setup display contains two new mass balance calculation options: **Label Claim – Metered Dose** and **Label Claim – Delivered Dose**. Fusion Inhaler Testing calculations and reporting operations now include support for these new mass balance calculation options.

Product Testing Configuration	
Configuration Name Default Config. NGI, Ph. Eur. E	
General Settings	Data Treatment Settings
Sampling Flow Rate 30.00 + 1.000 L/min Apply Specification Limits	Missing Peaks Use Zero 🗸
	Data Below LOQ Use Zero 🗸
Dose Delivery Mode Oral 🗸	
Mass Balance Calculation Method Uniformity	
Content Assay Uniformity Testing Uniformity	
Label Claim - Delivered Dose	
Label Claim - Metered Dose	

New LC System Module/Device Support

Empower CDS – SQD and SQD2 Support

Fusion QbD now automatically updates the "**Start**" and "**Stop**" time settings in the Functions tab grid within Empower instrument methods for both the **SQD** and **SQD2** Mass Detectors supported by Empower to those required by the individual experiment runs based on the pump program settings within Experiment Setup. This assures that MS detection is activated, and coordinated with UV detection, to support MS spectra based peak tracking in Fusion QbD.

		1atrix TestFile	s as System	n/Administra	ator - Instrument N	lethod Editor		-	_	×
	<u>V</u> iew <u>H</u> elp ≧ × ⊄	Waters PDA Detector W2998	Wat Guate Solv Mana ACQ-1	rnary S vent M iger-R	Vaters Acou sample knager FIN Q-rFTN ACQ-S	SQ or Detector 2				
Acoui Utta Parloman Functions	SQ Dete									^
loniza	tion: ES	•	Probe: Use	e Tune 👻	°C Sho	w Function Details	?			
	Function	lon Mode	Start (min)	Stop (min)		Time: 55.55 min mately 9.5 pts/sec)	^			
1	MS Scan	ES+	1.12	55.55		ss 150.00 to 650.00				
2			ò	•	•					
3			0		0					
4			•		°					
5										
6										
7					ç					
8										
9	_				ļ					
Commer	nt:				SIR Smoothing	Window Size:	Count:			
< Ready										>

Chromeleon CDS – External Solvent Selection Valve Support

Fusion QbD now supports the flexible configuration (2-position to 15-position) solvent selection valve drive (Dionex-Ext-SSV). As shown in the image below, users can now easily configure the specific valve configuration on their LC system within Fusion Administrator.

(Dionex-Ext-SSV) Thermo Scientific Dionex External Solvent Selection	n Valve ——
	-
Valve Module No.	
Valve module no.	
Valve 1	
Control Category Module	
	-
Valve Configuration	
valve configuration	
14 Position Solvent Selection Valve	
7 Position Solvent Selection Valve	_
8 Position Solvent Selection Valve	1
9 Position Solvent Selection Valve	
11 Position Solvent Selection Valve	
12 Position Solvent Selection Valve	
14 Position Solvent Selection Valve	
15 Position Solvent Selection Valve 🛛 💌	
Control Category Reservoir	